Cloud Resolving Modeling
نویسنده
چکیده
One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organizqtion, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.
منابع مشابه
High Resolution Modeling of Multi-scale Cloud and Precipitation Systems Using a Cloud-Resolving Model Group Representative
متن کامل
A numerical strategy for efficient modeling of the equatorial wave guide.
Convection in the tropics is observed to involve a wide-ranging hierarchy of scales from a few kilometers to the planetary scales and also has a profound impact on short-term climate. The mechanisms responsible for this behavior present a major unsolved problem. A promising emerging approach to address these issues is cloud-resolving modeling. Here a family of numerical models is introduced spe...
متن کاملCloud‐system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS‐5)
[1] The NASA Global Modeling and Assimilation Office (GMAO) has developed a global non‐hydrostatic cloud‐ system resolving capability within the NASA Goddard Earth Observing System global atmospheric model version 5 (GEOS‐5). Using a non‐hydrostatic finite‐volume dynamical core coupled with advances in the moist physics and convective parameterization the model has been used to perform cloud‐sy...
متن کاملMultiscale Models with Moisture and Systematic Strategies for Superparameterization
The accurate parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate through numerical models. Superparameterization is a promising recent alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model. Basic scales for cloud-resolving modeling are the microsc...
متن کاملEvaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar
Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative feedback processes is still the weakest component of current general circulation models (e.g., Senior and Mitchell...
متن کاملJp2.5 the Use of Three-dimensional Analyses of Cloud Attributes for Diabatic Initialization of Mesoscale Models
Diabatic initialization of cloud-resolving forecast models such as MM5, RAMS, ARPS, and WRF allows these models to prognose the future of precipitating cloud systems such as snowstorms and thunderstorms that are present at the initial time. This is a solution to one of the most long-standing problems in NWP: the 1to 3-h spin-up of cloud systems caused by the use of traditional dry initialization.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007